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Abstract

In this paper, a random numbers model using an innovative equiperipheral grid in cylindrical coordinates has been

proposed to predict the contact spot distribution of two rough surfaces at various loads. The ability of this method to

predict the contact spot distribution has been proven through comparison with results using a conventional equiangular

grid. Further, a network method using such an equiperipheral grid has been developed in order to solve a three-

dimensional heat conduction problem where two cylindrical specimens were connected to each other along the lon-

gitudinal direction. A uniform heat flux is given at the bottom surface of specimen I, a uniform temperature is

maintained at the top surface of specimen II, and thermal insulation is assumed at the outer radius of the two speci-

mens. The present numerical results have been compared to calculations using conventional equiangular grids and to

experimental results obtained for cylindrical brass specimens. The present results are shown to compare much more

closely with experimental measurements than previous calculations using conventional numerical models.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

As is well known, thermal contact resistance (TCR)

or thermal contact conductance (TCC) (TCR¼TCC�1)

between two solid surfaces plays a significant role in heat

transfer in applications such as electronic packaging and

nuclear reactors. Many studies [1–10] have been done

experimentally and numerically over the past three de-

cades. In our previous papers [11,12], a two-dimensional

rough surface model was proposed. Then, numerical

simulations on the thermal contact conductance using a

network method with conventional equiangular grids

in cylindrical coordinates were conducted and the re-

sults compared with those measured experimentally for

cylindrical brass specimens with flat and wavy rough

surfaces. Although the average thermal contact con-
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ductance at various contact pressures obtained from the

simulations agreed qualitatively with the corresponding

experimental results, there were some quantitative dif-

ferences between them. Further, the contact spot dis-

tribution obtained from the simulation showed a higher

probability density near the center portion. These dif-

ferences and unreasonable contact spot distribution are

partially attributed to the non-uniform grid area at the

conventional equiangular grids in cylindrical coordi-

nates.

In this paper, a new system employing an equipe-

ripheral grid in cylindrical coordinates has been pro-

posed to predict the contact spot distribution for a

random numbers roughness model. Further, a network

method valid for such an equiperipheral grid has been

developed for calculating the cross sectional average

thermal contact conductance at the interface of two

solid cylinders. The present numerical results have been

compared with those obtained from both conventional

simulations and previous experiments.
ed.
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Nomenclature

A scale factor, lm
Ar real contact area, m2

D cross sectional area of test specimen, m2

f axial load, N

hm thermal contact conductance, W/m2 K

l length of specimen, m

Li wavelength, m

M element numbers in radial direction

n upper limit number of superposed waves

N element numbers in peripheral direction

pm pressure, Pa

qm heat flux, W/m2

r; h radius and angle in cylindrical coordinates

r0 radius of specimen, m

Ra mean roughness, lm
Rmax1 maximum roughness of specimen I, lm
Rmax2 maximum roughness of specimen II, lm
RND random number

Dr radial increment, m

Ds peripheral increment, m

Tc temperature at the top surface, K

zðr; hÞ surface roughness distribution, lm

Greek symbols

ai orientation

ka thermal conductivity of air, W/mK

kI; kII thermal conductivity of specimens I and II,

W/mK

ui initial phase

rY yield stress, Pa

Subscripts

i number

r real

min minimum

max maximum
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Fig. 1. Simulated 3-D rough surface (Ra ¼ 2:2 lm,

Lmin ¼ 2� 10�4 m, Lmax ¼ 2� 10�2 m).
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2. Computational method

2.1. Calculation of contact spot distribution

Although various approaches have been proposed,

the modeling the contact of rough surfaces is still diffi-

cult problem. The difficulty in the development of a

theoretical model arises due to the fact that the geo-

metrical configuration of rough surface has a random

nature. Based on this consideration, we use a random

numbers model where the surface roughness, zðr; hÞ, can
be expressed as follows.

zðr; hÞ ¼ A
Xn

i¼1

sin
2pðr cos h cos ai þ r sin h sin aiÞ

Li

�
� ui

�

ð1Þ

and

A ¼ Ra

1
D

R R Pn
i¼1 sin 2pðr cos h cos aiþr sin h sin aiÞ

Li
� ui

h i��� ���rdrdh ;
ð2Þ

where r and h are the radius and angle in cylindrical

coordinates, D and Ra are the cross sectional area of the

test specimen and its mean surface roughness, n is the

upper limit number of superposed waves used to con-

struct the surface (n ¼ 64 in this paper), and Li, ui and ai
are the wavelength, initial phase and orientation at the

number i of superposed waves. These parameters can be

expressed by the following equations,
Li ¼ ðLmax � LminÞ � RNDi;1 þ Lmin;

ui ¼ 2p � RNDi;2;

ai ¼ 2p � RNDi;3:

ð3Þ

Here RNDi;1, RNDi;2 and RNDi;3 are the random numbers

and Lmin and Lmax are the minimum and maximum

wavelengths respectively.

Based on the above random numbers model, a three-

dimensional rough surface for a 20 mm · 20 mm square

plate can be constructed as shown in Fig. 1, when the

average roughness and minimum and maximum wave-

lengths are given. Fig. 2 shows a typical two-dimen-

sional surface roughness profile obtained from the

present model. The model shows a self-affinity that can

be seen by comparing the roughness profiles of the bold

curve in Fig. 2(a) and the enlarged profile of the part of

bold curve shown in Fig. 2(b).
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Fig. 2. Self-affinity of surface roughness.
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Fig. 3. Height distribution of surface.
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Fig. 3 shows a comparison of the probability density

function of the present model at mean roughness

Ra ¼ 2:2 lm with that of a Gaussian distribution. As

Johnson [13] pointed out, many real surfaces, notably

freshly ground surfaces, exhibit a height distribution

close to the �normal’ or Gaussian probability function.

The close agreement between the Gaussian distribution

and that of the present model validates the use of this

model to simulate rough surfaces.

When constructing the surface contact model, we

regard the roughness as a solid bar with its bottom

surface area equal to respective element area and with

height of local roughness. Fig. 4 shows the schematic of

the surface contact model, which is an expanded cross

sectional view near the contact interface. Lots of voids

filled with air (thermal conductivity ka) of various

thicknesses are distributed randomly over the interface.

The deformation of each asperity adopted here is as-

sumed to be fully plastic, and two specimens are pressed

together until the following condition [14] is satisfied.

f ¼ 3rYAr: ð4Þ
Here, f is the axial load, rY is the yield stress (89.2 MPa

for brass) and Ar is the total real contact area. It is as-

sumed that the volume of deformed spot in the present

method is vanished automatically and does not change

the volumes of the neighbor spots.

Fig. 5(a) and (b) show the conventional grid system

in cylindrical coordinates and the contact spot distri-

bution obtained by using this grid system. It is noted

that the contact spot distribution shows a higher contact

probability density near the center portion than the

cylinder edge. Such an unreasonable distribution is in-

herently caused by the conventional grid system. Fig.

6(a) and (b) show the surface roughness profiles along

the peripheral direction at r ¼ 10 and 20 mm, respec-

tively. The peripheral grid increment at r ¼ 20 mm is

two times of that at r ¼ 10 mm, therefore, the roughness

profiles of the latter cannot be expressed with the similar

resolution as of the former.

To solve this problem, a new grid system that has

equiperipheral increment in whole radial position and

also almost the same increments in both the radial and

peripheral directions has been proposed as shown in Fig.

7(a). This scheme divided the circle area into three equal,

repeatable parts. The total number of elements in the

radial (M) and peripheral (N ) directions can be ex-

pressed by

N ¼ 6M þ 3: ð5Þ

The corresponding peripheral increment (Ds) can be

calculated exactly by

Ds ¼ pDr=3: ð6Þ

It is noted that the radius of the small circle at the center

area equals Dr and M is counted from unity. Based on

the above scheme, the contact spot distribution calcu-

lated becomes reasonable and independent of the radial

position as shown in Fig. 7(b).
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Fig. 5. Conventional equiangular grid system (a) and distri-

bution of contact spots (b).
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Fig. 6. Surface roughness profiles in peripheral direction: (a)

r ¼ 10 mm and (b) r ¼ 20 mm.
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Fig. 8(a)–(c) show the surface roughness profiles

along the peripheral direction at r ¼ 10 and 20 mm, and

along the radial direction. These profiles show clearly

that the model roughness can be expressed with the same

resolution in the whole surface area.

2.2. Heat conduction simulations

Fig. 9 shows the physical model and coordinate

system for the heat conduction simulations. A pair of
specimens of length l and radius r0 is pressed together

with an axial load f , or an equivalent mean nominal

contact pressure pm. Specimens I and II have the thermal

conductivities kI and kII and maximum roughness

heights Rmax 1 and Rmax 2 respectively. A uniform heat flux

is supplied at the bottom surface of the lower specimen

(z ¼ 0), a uniform temperature is assumed at the top

surface of the upper specimen (z ¼ 2l), and the side

surface of the two specimens (r ¼ r0) is thermally insu-

lated.

As already shown in Fig. 7(b), a reasonable contact

spot distribution can be obtained by the equiperipheral

grid method. In the present heat conduction simulations,

a new network method valid for such an equiperipheral

grid is developed to calculate the three-dimensional

steady-state heat conduction in a cylindrical coordinate

system. Fig. 10 shows the four contact model combi-

nations at the interface region in the z-direction. The
harmonic average thermal conductivity is defined re-

spectively. For the combination (a) where the specimens

I and II are in direct contact, the harmonic mean ther-

mal conductivity, k, is estimated by

k ¼ dI þ dII
dI
kI

þ dII
kII

; ð7Þ

where the dI and dII are the lengths between the neigh-

boring nodes and the contact interface and kI and kII are
the thermal conductivities of specimens I and II, re-

spectively. For the combination (b) where the specimen I

is in direct contact with air, the harmonic mean thermal

conductivity, k, is estimated by

k ¼ dI þ da
dI
kI

þ da
ka

; ð8Þ

where da is the length between the neighboring air node

and the contact interface and ka is the thermal conduc-

tivity of air. For the combination (c) where the specimen
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contact spots (b).
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Fig. 8. Roughness profiles in peripheral and radial directions:

(a) r ¼ 10 mm (in peripheral direction), (b) r ¼ 20 mm (in pe-

ripheral direction) and (c) r-direction.
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II is in direct contact with air, the value of k is calculated
by

k ¼ dII þ da
dII
kII

þ da
ka

; ð9Þ

and finally, for the combination (d) where the specimens

I and II are both in contact with air, in this case k is

estimated by

k ¼ dI þ dII þ da
dI
kI

þ dII
kII

þ da
ka

: ð10Þ
Fig. 11 shows a typical network system of the equi-

peripheral grid in the r–h plane. To calculate the heat

flows across the control surfaces perpendicular to the

radial direction, the temperatures at the fictitious nodes

1 and 4 adjacent to the control volume 0 can be calcu-

lated by interpolation. The temperatures at the periph-

erally adjacent nodes 2 and 3 can be used directly to

calculate the heat flows across the related control sur-

faces. By using the values of thermal conductivities at

nodes 10, 1
00
, 40 and 4

00
, the thermal conductivities at

nodes 1 and 4 are calculated by



Fig. 10. Contact model combinations in the z-direction.
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k1 ¼
du1 þ dd1
du1
k10

þ dd1
k1"

; ð11Þ

k4 ¼
du4 þ dd4
du4
k40

þ dd4
k400

; ð12Þ

where du1, dd1, du4 and dd1 are the peripheral lengths as

shown in the figure. Therefore, the harmonic thermal

conductivity in the r–h plane, ki;0 can be estimated as

follows

ki;0 ¼
2

1

k0
þ 1

ki

; ð13Þ

where i represents the node number and changes from 1

to 4. Further, by using the thermal conductivities of

nodes neighboring the control volume in the z-direction,
k5 and k6 the remaining two harmonic mean thermal

conductivities can be obtained as follows
k5;0 ¼
0:5dzk þ 0:5dzk�1

0:5dzk
k0

þ 0:5dzk�1

k5

; ð14Þ

k6;0 ¼
0:5dzk þ 0:5dzkþ1

0:5dzk
k0

þ 0:5dzkþ1

k6

: ð15Þ

A total of nine different combinations for the present

equiperipheral grid must be considered, however, the

calculation procedure is similar to the above. Once the

harmonic mean thermal conductivities and the temper-

atures at nodes 1 and 4 are obtained, the temperature at

node 0 can be calculated with the conventional network

method.

To save the computation time, the successive over-

relaxation (SOR) method is used. Iteration is terminated

when the maximum temperature difference between the

successive steps becomes less than 10�6. Fig. 12 shows

the effect of grid size on the thermal contact conduc-

tance. The thermal contact conductance increases as the

number of grids in the radial direction increases, how-

ever, the value becomes almost constant when the

number exceeds 60. The following results were all ob-

tained using 80 grids in the radial direction.



0.05 0.1 0.2 0.5 1 2

3

10

30

pm  [MPa]

h m
[k

W
/m

2 K
]

8pm
0.3

12pm
0.4

Ra=2.2µm(Exp. ) Ra=1.1µm(Exp.)
Ra=2.2µm(Present Num.) Ra=1.1µm(Present Num.)

LSQ (Ra=2.2µm, from Present Num.) LSQ (Ra=1.1µm, from Present Num.)

Ra=2.2µm(Conventional Num.) Ra=1.1µm(Conventional Num.)

Fig. 13. Relation between pm and hm.

X. Zhang et al. / International Journal of Heat and Mass Transfer 47 (2004) 1091–1098 1097
3. Results and discussion

As described in our previous paper [11], the thermal

contact conductance averaged over the contact interface

area is defined by the following equation,

hm ¼ qm
Tm1 � Tm2

: ð16Þ

Here, qm is the mean heat flux and Tm1 and Tm2 are the

mean contact surface temperatures of the lower and

upper specimens, respectively, which are evaluated using

an extrapolation method of the temperatures sufficiently

away from the interface.

Fig. 13 compares the average thermal contact con-

ductance obtained from the present simulations and

previous ones and experiments [11] for the flat rough

surfaces. Two cases with roughness Ra ¼ 1:1 and 2.2 lm
are considered. The large differences are observed be-

tween the experimental results and the previous nu-

merical results using the conventional equiangular

grid system. While the present numerical results, indi-

cated with open circles and triangles, are greatly im-

proved and agree very well with the experimental

measurements. Further, the computational memory and

time of the present method are both much less than

the previous simulations with the conventional equian-

gular grid system. This is because the present method

can reproduce the fine surface roughness distribution

with high and uniform resolution by using fewer total

grids than the previous one. Although somewhat com-

plicated methods are needed to construct the net-

work system, the present equiperipheral grid system is

found to be very effective to obtain accurately the

thermal contact conductance which is independent of

grid size.
4. Conclusions

A new method of numerical simulation in cylindrical

coordinates has been proposed to calculate the thermal

contact conductance at the solid–solid interface. The

method is proven to be valid and effective through

comparison with experimental results. The main con-

clusions are as follows.

(1) The surface roughness profile obtained by the ran-

dom numbers model has the characteristic of self-

affinity.

(2) A new grid system that has an equiperipheral incre-

ment and a uniform grid area independent of radial

position has been proposed. The grid system can re-

produce the surface roughness with uniform resolu-

tion and predict the reasonable contact spot

distribution in cylindrical coordinates.

(3) A network method applicable to the equiperipheral

grid system has been developed in order to calculate

the thermal contact conductance.

(4) The present numerical results agree very well with

those obtained experimentally, compared to those

numerical results obtained using the conventional

equiangular grid system. Further, the present meth-

od requires less computational memory and time.
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